A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro.

نویسندگان

  • T Achsel
  • H Brahms
  • B Kastner
  • A Bachi
  • M Wilm
  • R Lührmann
چکیده

We describe the isolation and molecular characterization of seven distinct proteins present in human [U4/U6.U5] tri-snRNPs. These proteins exhibit clear homology to the Sm proteins and are thus denoted LSm (like Sm) proteins. Purified LSm proteins form a heteromer that is stable even in the absence of RNA and exhibits a doughnut shape under the electron microscope, with striking similarity to the Sm core RNP structure. The purified LSm heteromer binds specifically to U6 snRNA, requiring the 3'-terminal U-tract for complex formation. The 3'-end of U6 snRNA was also co-precipitated with LSm proteins after digestion of isolated tri-snRNPs with RNaseT(1). Importantly, the LSm proteins did not bind to the U-rich Sm sites of intact U1, U2, U4 or U5 snRNAs, indicating that they can only interact with a 3'-terminal U-tract. Finally, we show that the LSm proteins facilitate the formation of U4/U6 RNA duplices in vitro, suggesting that the LSm proteins may play a role in U4/U6 snRNP formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins.

During activation of the spliceosome, the U4/U6 snRNA duplex is dissociated, releasing U6 for subsequent base pairing with U2 snRNA. Proteins that directly bind the U4/U6 interaction domain potentially could mediate these structural changes. We thus investigated binding of the human U4/U6-specific proteins, 15.5K, 61K and the 20/60/90K protein complex, to U4/U6 snRNA in vitro. We demonstrate th...

متن کامل

Characterization of Sm-like proteins in yeast and their association with U6 snRNA.

Seven Sm proteins associate with U1, U2, U4 and U5 spliceosomal snRNAs and influence snRNP biogenesis. Here we describe a novel set of Sm-like (Lsm) proteins in Saccharomyces cerevisiae that interact with each other and with U6 snRNA. Seven Lsm proteins co-immunoprecipitate with the previously characterized Lsm4p (Uss1p) and interact with each other in two-hybrid analyses. Free U6 and U4/U6 dup...

متن کامل

The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA.

The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contribut...

متن کامل

RNA structure and RNA-protein interactions in purified yeast U6 snRNPs.

The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the int...

متن کامل

Electron microscopy of U4/U6 snRNP reveals a Y-shaped U4 and U6 RNA containing domain protruding from the U4 core RNP

We describe the electron microscopic investigation of purified U4/U6 snRNPs from human and murine cells. The U4/U6 snRNP exhibits two morphological features, a main body approximately 8 nm in diameter and a peripheral filamentous domain, 7-10 nm long. Two lines of evidence suggest that the peripheral domain may consist of RNA and to contain U6 RNA as well as the 5' portion of U4 RNA. (a) Separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 18 20  شماره 

صفحات  -

تاریخ انتشار 1999